
www.manaraa.com

Proceedings of the IASTEDInternational Conference
Parallel and Distributed Computing Systems
November 3-6, 1999,MIT, Boston,USA

302-305 -1-

An Automatically Reconfigurable Distributed Data Storage System
for High Data Availability

Abstract
In a largely distributed data storage system, high data
availability becomes a major issue of concern. Storage
server failure increases with the number of servers, or
data objects get inadvertently deleted or corrupted.
Maintaining highly available data storage service in a
distributed environment is an acute problem. We
propose a novel scheme by which highly available and
dependable data service is achieved. The proposed
scheme stripes a file into data blocks and distributes
them over distributed storage servers. To retrieve the
original file, the data blocks are downloaded from the
storage servers in parallel and then merged. The scheme
employs a reconfigurable architecture consisting of a
cluster of distributed data servers. The reconfiguration
of the storage is performed in order to recover missing
data blocks by a coding method and to relocate these
onto operational backup servers for continuous data
availability.

keywords: Distributed Systems, Availability, Coding,
Reliability, Storage Systems.

1. Introduction

The number of computer systems and users connected
to the Internet has been growing rapidly. In a very large
distributed computing environment such as the Internet,
the likelihood of server failure increases with the
number of servers. Failure may occur due to software
and hardware malfunctioning, excessive server load,
network congestion, and/or natural disasters. Such
failures may lead to data unavailability and therefore
less dependable service to the user.

In this paper, we develop a scheme for enabling high
data availability and dependable service in a distributed
environment. The proposed scheme slices a file into
data blocks and distributes them over storage servers.
To retrieve the original file, the data blocks are

downloaded from the storage servers in parallel and
then merged. Data blocks may however become
unavailable due to the server being down or the blocks
being deleted or corrupted in some way. In the event of
a problematic file, the reconfiguration scheme rebuilds
the file by recovering the missing or corrupt blocks and
redistributes them over the operational servers. A
problematic file is defined here as the one where some
blocks are not available for correct download. The
reconfigurability ensures the availability of the data
blocks before a request is made to download them. The
user can rely on dependable service as he has access to
the data in a timely fashion. The restoration of the
missing data blocks is based on a coding scheme also
presented in this paper.

Current distributed file storage systems, such as the
Coda, the Andrew File System, and the Echo File
system, store data objects across multiple storage
servers. The Coda file system, which inherits largely
from the Andrew File System, was developed to focus
on the availability issue. It does not reconfigure the
system to provide the data availability. Instead it keeps
read-only replicas of files at remote sites in case of a
server failure and disconnected operation. The Echo file
system has various ways of detecting faults, such as
server failure, automatically and can report these by a
daemon process that sends messages to people
responsible for dealing with faults. However,
reconfiguration is done manually. In general,
availability of data is provided by keeping the file at a
primary site for download, and its replicas at other sites
in case of primary site failure. The Echo system relies
heavily on redundant copies of everything in case of
failure, including servers and entire data objects [1][3].
The secondary site monitors the primary site availability
and vice versa. None of these systems uses an
autonomous tool that monitors overall data availability
and reconfigures the storage system automatically.

Gwang S. Jung Qutaibah M. Malluhi and Farida Chowdary

 Department of Mathemathics and Computer Science Department of Computer Science

 Lehman College, The City University of New York
 Bronx, NY 10468 gjung@alpha.lehman.cuny.edu

 Jackson State University, Jackson, MS 39217
qmalluhi@homs.jsums.edu fachowdh@ccaix.jsums.edu

www.manaraa.com

-2-

Our proposed scheme recovers only the part of a data
object that is problematic, and redistributes it onto an
operational server. Redundant parity blocks are added
to the original data blocks. The parity blocks are used
for recovering original data blocks if a portion of the
data blocks is unavailable. The data recovery is
automatically performed by a decoding procedure based
on the redundant parity blocks. Our reconfiguration
scheme is done on a periodic and automatic basis
without user knowledge or manual intervention.

In this paper, we describe a prototype, named RDSS
(Reconfigurable Distributed Data Storage System),
developed based on the proposed scheme. Files in the
RDSS are striped into data blocks and distributed onto a
chosen set of functional data servers for storage. RDSS
automatically checks the server status and reconfigures
the data servers if necessary.

In section 2, we describe the architecture of the RDSS.
The coding technique, which underlies the
reconfiguration scheme for rebuilding the missing data
blocks, will be discussed in section 3. In section 4, the
reconfiguration scheme of the RDSS is explained in
some detail. Section 5 will present the conclusion.

2. The Architecture of the Reconfigurable
Distributed Data Storage System

The Reconfigurable Distributed Data Storage System
(RDSS) provides an efficient, reliable, and highly
available data storage and retrieval environment. In the
RDSS environment, files are striped into data blocks
and then distributed over data servers for storage. A
user retrieves a file by using multithreaded
communication links to the data servers. The servers
then transmit the data blocks in parallel to the user. The
user collects and merges these blocks into the original
file. If necessary, parity blocks are retrieved and
decoded to recover original unavailable data blocks.
High data rates are achieved through utilizing the
cumulative bandwidth of multiple network paths. The
bandwidth of the user’s client can therefore be fully
utilized. The reconfigurability ensures the availability
of the data blocks before a request is made to download
them. Scalability can be achieved by simply adding
more servers to increase the level of parallelism in data
delivery and the degree of data availability and
reliability.

A schematic view of the RDSS is shown in Figure 1.
The four major components of the RDSS are: data/
parity block distributor, data/parity block server,
autofixer, and the user client.

(i) Distributor: The main functions of this component
are to slice a file object into a set of equal-sized data
blocks and to upload them to distributed data/parity
block servers. The married block concept is used to
group m data blocks, out of p striped data blocks of the
original file, together with k parity blocks for fault
recovery, where (refer to the Figure 3). An
encoding algorithm is used to encode m data blocks into
k parity blocks such that k out of m data blocks missing
can be tolerated [6]. These parity blocks are uploaded to
the parity servers. After the blocks (data and parity
blocks) have been successfully uploaded, the
information about distributed data blocks, such as
logical block identification and its physical address
(e.g. the URL of a block if the data servers are Web
servers), is created by the Distributor. The information
is kept in a metafile and uploaded to a server called
master server (one of the data block servers). The
metafile can be replicated over several servers for
higher availability.

Figure 1 The Architecture of the RDSS

(ii) Server: There are three types of servers: data
servers, parity servers, and backup servers. A data
server stores data blocks in its file system. After a data
server stores a data block, it sends an acknowledgment
back to the Distributor containing the physical address
of the data block. The parity server stores the parity
blocks to tolerate missing data blocks. Backup servers
are used to store newly recovered data blocks, initially
stored in problematic data servers.

(iii) AutoFixer: The AutoFixer is used for maintaining
high data availability of the system through
reconfiguration. It monitors the availability of files and
the status of the data servers periodically. It is
responsible for making sure that data blocks are

k m≤

data servers parity servers backup servers

Servers

 Distributor

 AutoFixer

User Client

log table

Upload
data
blocks

Get parity
to recover
missing
data
blocks.

Redistribute
blocks

Log
Complaints
in log table

Update
metafile

Get metafile

Download
data blocks

Store
metafile

… …
…

Upload parity
blocks

www.manaraa.com

-3-

retrievable from a data server. The AutoFixer is able to
automatically rebuild missing or corrupt data blocks by
a decoding algorithm based on the corresponding parity
blocks, and redistributes them to ensure the data
availability. The Figure 2. shows the process of the
storage reconfiguration performed by the AutoFixer. In
Section 3 the reconfiguration scheme of the AutoFixer
will be described in detail.

Figure 2 The Process of Storage Reconfiguration by the AutoFixer

(iv) User Client: The user client first downloads the
metafile from a master server and creates multithreaded
links to data block servers. Data blocks are then
downloaded from the data servers to the client from the
data block servers in parallel. If any data blocks are
found to be missing, the client downloads the
associated parity blocks, and then automatically
rebuilds the lost data blocks using the decoding
algorithm. The data blocks are finally merged into the
original file. The client also has an active part to play in
the reconfiguration process by communicating pertinent
information to the AutoFixer.

3. Coding for Recovering Missing Blocks

In this section, the coding algorithm is described in
some detail. This algorithm is the basis for the recovery
of lost blocks in our reconfiguration scheme. In this

method, we encode symbols of the original data

object into symbols. The original
symbols are called an information word and the coded

 symbols are called a code word. If the information
word appears in the code word, the code is called to be
systematic. In the absence of faults, the user client
needs to be able to get the information word stored on
the various data servers with no decoding. Therefore,
we need to use systematic codes for our environment.

All of the arithmetic operations used in this section are
operations in a Galois field. Throughout this section, we
use capital letters to denote vectors or matrices. A
superscript is used to indicate the matrix dimensions.

For example, indicates that the matrix P has m
rows and k columns.

3.1. Encoding Process

Let be an information word. A

code word will be produced by

multiplying U by an matrix G. The rows of G
will act as a basis for a vector space containing all the

code words. Therefore, . We require that
the rows of G be linearly independent. Otherwise, there
will be more than two information words that will be
mapped onto the same code word. Moreover, we want
the code to be systematic. Therefore, G should be of the
form,

Therefore,

Let’s assume that k = servers are faulty. This
means that k elements of the V are missing. Our goal is
to find the way for the AutoFixer to reconstruct the
original data (i.e., the vector U). Let be the set of m
married blocks which the client could download, i.e.,

 is V without the k missing elements. Let be the

 matrix generated by ignoring the k columns of

 corresponding to the missing blocks. Clearly,

. Suppose that is invertible, we can

obtain U by the equation .

Since U can be reconstructed only if is invertible,

obtaining invertible matrix is the key to the
decoding process.

3.2. Generating the G matrix

Therefore, the matrix G must satisfy the following three
conditions:

A u to f ix e r D e c o d e r

1 . D o w n lo a d
fr a g m e n ts ,
p a r ity

2 . R e s to re lo s t
b lo c k

3 . U p lo a d
re s to re d b lo c k to
b a c k u p s e rv e r .

4 . U p d a te
M e ta f ile

M e ta f i le

d a t a /p a r it y
s e r v e r s

m

n m k+= m

n

P
m k×

U u0 u1 … um 1–, , ,()=

V v0 v1 … vn 1–, , ,()=

m n×

V U G×=

G I
m m×

P
m k×

1 0 0 … 0 g0m … g0 n-1,

0 1 0 … 0 g1m … g1 n-1,

0 0 1 … 0 g2m … g2 n-1,

:
·

:
·

:
·

:
·

:
·

:
·

:
·

:
·

0 0 0 … 1 gm 1 m,– … gm 1 n-1,–

= =

V U G× U I
m m×

P
m k××

U I U P××[] u0 u1 … um 1– vm vm 1+ … vn 1–, , , , , , ,()

= =

= =

n m–

V′

V′ G’

m m×

G

V’ UG’= G’

V’G’
1–

UG’G’
1–

U= =

G’

G’

www.manaraa.com

-4-

(1) .

(2) The rows of the G matrix must be linearly indepen-
dent.
(3) Every m columns of G have to be linearly indepen-
dent.
Condition (1) ensures that G produces a systematic
code, condition (2) ensures that no two information
words are mapped into the same code word, and
condition (3) ensures that , which is a column subset
of G, is always invertible. The following two steps
describe an algorithm for generating the desired G
matrix. This algorithm assumes that we are using

 to develop our code and that .

step1: Let be any n distinct nonzero

elements in . Construct a matrix of the following
form.

where, and for .

step2: Transform into a systematic matrix G using

elementary row operations. An elementary row
operation on a matrix is one of the following two
operations: (1) multiply one of the rows by a nonzero
scalar or (2) add a scalar multiple of one row to another.

It can be easily shown [4] that the matrix G generated
by this algorithm is invertible.

3.3. Decoding Process

The decoding process may seem very time consuming.
It requires the inversion of a matrix followed by a
matrix-vector multiplication. However, notice that the
inversion is done only once during the initialization
process or when the system configuration changes.
Notice that has the following form:

.The columns of are partitioned into two parts. The

first part is a column subset of . The number of
columns in this part is equal to the number of
operational data servers. The second part is a column

subset of . This part contains at most same
number of columns as the number of faulty servers.
Since the number of faulty servers is much less than the

number of operational servers, and its inverse
are sparse matrices. This sparsity can be exploited to
obtain more efficient algorithms.

We can show [4] that the vector of faulty (missing) data
blocks can be computed by

 where,

= vector of received parity blocks

= vector of received data blocks

= rows of Q corresponding to non-faulty data servers

= rows of Q corresponding to faulty data servers

= l check columns of G corresponding to parity serv-
ers

Notice that needs to be computed only once for a

certain system configuration. Because is much

smaller than .

4. Storage Reconfiguration Scheme of the
RDSS
In this section, we describe the automatic mechanism of
the RDSS for reconfiguring data storage.

4.1. The AutoFixer

The AutoFixer, as described briefly in the previous
section, handles the recovering and redistributing of
unavailable data blocks and is therefore the key
component in the reconfiguration scheme. The user
client also has an important role to play in the process
of the reconfiguration. If the user client has trouble
downloading data blocks from a server it lodges a
complaint to the AutoFixer about the file consisting of
the problematic data blocks. The AutoFixer logs the
complaint in the log table.

A single report for a problematic file download does
not necessarily mean that the corresponding data block
servers were problematic or completely unavailable. It
could be due to temporary network congestion or the
data server being overloaded. Thus, the AutoFixer
needs to decide whether to restore missing blocks or
not. If a number of complaints against a file is greater

G I P=

G’

GF q() n q 2–≤

y1 y2 y3 … yn, , , ,

GF q()

G1

y1 y2 y3 … yn

y1
2

y2
2

y3
2 … yn

2

:
·

:
·

:
·

:
·

:
·

y1
m

y2
m

y3
m … yn

m

=

yi yj≠ yi 0≠ 1 i j< m≤ ≤

G1

G’

G’ column subset of I
m m×

 column subset of P
m k×=

G’

I
m m×

P
m k×

G’ G’
1–

Uf

Uf Vs U
f̃

Q
f̃

×–() Qf
1–×=

Vs

U
f̃

Q
f̃

Qf

Q

Qf
1–

Qf
l l×

G’
m m×

www.manaraa.com

-5-

than a threshold value, the Autofixer initiates
recovering the problematic file and redistribute the
corresponding data blocks.

Figure 3 Married Block Concept

The recovery of a problematic file is achieved by a
decoding algorithm. Redundant parity blocks are
created and associated with the data blocks by an
encoding algorithm when the file is striped and
distributed over servers. The parity blocks are stored in
the parity servers.

Figure 4 (a) Autofixing a lost block (Case 1)

Let n be the total number of servers and m be the
number of data servers, m<n. The remaining k=n-m
servers are used to store parity blocks for data recovery
(Refer to the Figure 3). The choice of m and k is a
function of the desired storage overhead and desired
degree of fault tolerance. A file object is first striped

into p data blocks. For simplicity we assume that m
divides p. Otherwise, dummy blocks can be added to
make p a multiple of m. These p blocks are divided into
groups of m blocks each. Each group is encoded to
produce k redundant parity blocks. The m data blocks
and their corresponding k redundant blocks are said to
be married. Encoding is done in such a way that if any
m out of n married blocks are available, the original m
blocks can be reconstructed. In Section 4, we discuss
the coding scheme central to the storage reconfiguration
in more detail.

Once the missing blocks are recovered, the Autofixer
distributes these to backup servers. The metafile is
updated according to the new data distribution. The
data storage of the RDSS is automatically reconfigured
by the AutoFixer and therefore the whole
reconfiguration process is transparent to the user.

4.2. Reconfiguration Protocol of the AutoFixer
The AutoFixer first receives complaints about a
problematic file from the user client. It saves the
complaints in the log table in (file name, identification
of the problematic blocks, metafile) format. It initiates
log_table_analysis thread on a periodic basis. The
log_table_analysis thread determines which files
should be fixed based on the frequency of the
complaints. All the entries corresponding to the files to
be fixed are extracted into to_be_fixed table. It then
initiates the file_fixing thread. Based on the entries
stored in the to_be_fixed table, the fixing thread
analyzes the storage configuration of the data and parity
block servers of each problematic file, and checks
whether it can recover the file. Since a file consists of
married group, each married group of the file needs to
be examined whether it has any missing blocks and
recoverable. The missing blocks are recoverable if the
number of missing blocks in a married group is less
than or equal to the number of parity blocks in the
married group. The file_fixing thread then checks the
status of the data servers (To ensure the server status,
each server is examined repeatedly in a time interval).
Based on the server status, the file_fixing thread handles
the reconfiguration as follows.

(case 1) All servers are operational but some data
blocks are deleted.

For each married group that has missing blocks, it
determines the number of parity blocks to be
downloaded. It then downloads all the necessary data
and parity blocks to decode the missing blocks back.
After the blocks are recovered, they are stored back
onto the original data servers. Therefore the metafile is

n married
blocks

 m data servers k parity servers

server 1 server 2 server m server m+1 server n

Data
X1.sp
X2.sp
X3.sp
X4.sp

Parity
X1.pr
X2.pr

X1.spt is

X1.sp

X2.sp
X4.sp

X3.sp X1.pr

 parity servers

AutoFix

S1 S2 S3 S4 P2P1
data servers

Recov
Married

www.manaraa.com

-6-

kept intact. For example, as shown in Figure 4, X1.spt,

X2.spt, X3.spt, and X4.spt are the data blocks of a
married group of file X. Blocks X1.prt and X2.prt are the
parity blocks of the married group. Assume file X
consists of only one married group and X1.spt file is

missing. To recover X1.spt, either X1.prt or X2.prt needs
to be downloaded. After X1.spt is recovered, it is stored
back to the original server, S4.

(case 2) One or more data servers are down.

Figure 5 (b) Autofixing a lost block (Case 2)

The recovery of the missing data blocks is done by the
same way outlined for the case 1. After data blocks are
recovered, they are stored in backup servers. The
metafile is then updated and restored in the master
server. Figure 5 shows an example.

The protocol of the AutoFixer is depicted in the
Figure 6.

5. Conclusions

In this paper, we have described a novel scheme and its
prototype RDSS (Reconfigurable Distributed Data
Storage System) for enabling highly available and
dependable data storage and delivery service in a
distributed computing and communication
environment.

The RDSS employs multiple distributed data servers, as
parallel data block servers, in order to better utilize the

available computing, storage, and bandwidth resources.
A file object is divided into blocks that are stored over
distributed data servers. Efficient data transfer can then
be achieved by using multiple links, established
between the client and data servers, to transfer data
blocks in parallel.

Figure 6 The Protocol of the AutoFixer

The salient feature of the RDSS is the storage
reconfigurability in the case of faulty data blocks. The
reconfiguration of the storage is performed in order to
recover missing data blocks by a coding method and to

Married blocks
X1.spt
X2.spt
X3.spt
X4.spt

Parity blocks
X1.prt
X2.prt

X1 and X2

missing, both S1
and S2 are down.

Backup
servers

Recovered
X1.spt

Recovered
X2.spt

data servers
parity servers

Autofixer

S1 S2

X4.spt

X3.spt

X1.prt

X2.prt

BS1 BS2

__
StaStart receive_complaints thread;
2. Start log_table_analysis thread;

Thread receive_complaints
 Open socket connection to listen from users’ clients
 while (true) {
 Receive complaints from users’ clients in
 (file name, metafile, list of problematic blocks);
 Save complaints in the log file;
 Update the frequency of the complaints,
 numofcomplaints, against same file.
 }
end // of receive_complaints thread

Thread log_table_analysis {
 for(i = 1 to number of entries in log table) {
 with the ith entry,
 if (numofcomplaints > f) // predetermined frequency f
 then { add the ith entry to to_be_fixed table;
 delete entry from log_table;
 }
 }// end of for
 if to_be_fixed_table has been updated then
 start file_fixing thread;
end // of log_table_analysis thread

Thread file_fixing {
 repeat {
 for each entry in the to_be_fixed table do {
 get the configuration of the data and parity block servers
 from the metafile; // from the table entry
 get the married group of data and parity blocks of the file
 from the metafile; // from the table entry
 if (the number of missing blocks of each married group
 is less than or equal to the number of parity blocks)
 then do { // begin fixing
 check the status of the data servers
 in a predetermined time period;
 if all the servers are operational then { //case (1)
 for each married group that has missing block(s) do {
 determine the No.of parity blocks to be downloaded;
 download married data and parity blocks of the
 missing block(s);
 recover the missing data block(s) by decoding;
 restore the recovered block(s) into the
 corresponding data server;
 } // end of for each ...
 } // of if then.. case(1)..
 else if only some of the servers are operational then {
 // case (2)
 for each married group that has missing block(s) do {
 determine the No. of parity blocks to be downloaded;
 download married data and parity blocks of
 the missing block;
 recover the missing data blocks by decoding;
 restore the recovered block into backup data server;
 update the metafile;
 } // end of for each ...
 restore the updated metafile into the master server;
 } // of if then.. case(2)..
 delete the entry from to_be_fixed table;
 } // of if then .. begin fixing
 else leave the entry in the table
 //cannot be fixed at this time it will be reexamined later
 until (all entries in the to_be_fixed table are examined);
end // of file_fixing thread
__

www.manaraa.com

-7-

restore them onto operational data or backup servers for
continuous data availability. The reconfiguration
process is performed on a periodic and automatic basis
without user knowledge or manual intervention.

The RDSS has several advantages over traditional data
storage systems. The advantages of our approach
include: high data rates, scalability, availability,
reliability, and seamless system controlled load
balancing.

Acknowledgments: The work described in this paper
has been in part supported by the DOD (DAHC94-96-
C-0005/0010) and DOE (DE-FG02-97ER25339). The
authors particularly would like to acknowledge Mr.
Hemant Mahidhara and Mr. Satish Reddy for their great
help in the implementation of the RDSS prototype.

6. References

[1] A.D. Birrell, A. Hisgen, C. Jerian, T. Mann,
and G. Swart, “The Echo Distributed
File System”, SRC Research Report 111,
Systems Research Center, Digital Co., Palo
Alto, CA, 1993.

[2] G.C. Clark, Jr., and J.B. Cain, Error-
Correction Coding for Digital
Communications, Plenum Press, New York,
1981.

[3] C. Jerian, G. Swart, A.D. Birrell, A. Hisgen,
and T. Mann, “Availability in the Echo File
System”, SRC Research Report 112, Systems
Research Center, Digital Co., Palo Alto, CA,
1993.

[4] Q.M. Malluhi and W.E. Johnston, "Coding for
High Availability of a Distributed-Parallel
Storage System", IEEE Transactions on
Parallel and Distributed Systems, Vol. 9, No.
12, pp. 1237-1252, December 1998.

[5] J.H. Morris, M. Satyanarayanan, M.H. Conner,
J.H. Howard, D.S. Rosenthal, and F.D. Smith,
“Andrew: A Distributed Personal Computing
Environment”, Communication of ACM, vol.
29, no. 3, March 1986.

[6] G.S. Jung, Q.M. Malluhi and W.G. Brown, “A
Scheme for High Performance Data Delivery
in the Web Environment”, in the Proceedings
of International Conference on Parallel and
Distributed Systems, pp. 210 - 217, 1998.

[7] W.W. Peterson and E.J. Weldon, Error-

Correcting Codes, 2nd ed., Cambridge MIT
Press, 1972.

[8] T.R.N. Rao and E. Fujiwara, Error-Control
Coding for Computer Systems, Prentice-Hall,
Inc., New Jersey, 1989.

[9] M. Satyanarayanan, J.J. Kistler, P. Kumar,
M.E. Okasaki, E.H. Siegel, and D.C. Steere,
“CODA: A Highly Available File System for
Distributed Workstation Environment,” IEEE
Transactions on Computers, vol. 39, no. 4,
Apr. 1990.

